Visualizing Baraminic Distances Using Classical Multidimensional Scaling

نویسنده

  • Todd Charles Wood
چکیده

Baraminology methodology continues to mature, and in this article, the multivariate technique of classical multidimensional scaling is introduced to baraminology. The technique is applied to three datasets previously analyzed in baraminology studies, a Heliantheae/Helenieae (Asteraceae) dataset, a fossil equid dataset, and a grass (Poaceae) dataset. The results indicate that classical multidimensional scaling can confirm and illuminate previous baraminological studies, thereby strengthening identifications of baraminic units.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Baraminological Analysis Places Homo habilis, Homo rudolfensis, and Australopithecus sediba in the Human Holobaramin

The baraminic status of fossil hominids was tested using statistical baraminology techniques. Eight previously published cladistic studies of fossil and extant hominids were reexamined with baraminic distance correlation (BDC) and multidimensional scaling (MDS). Results indicate that hominins may be divided into as many as four different holobaramins: (1) the genus Homo (including Australopithe...

متن کامل

Horseshoes in Multidimensional Scaling and Kernel

Classical multidimensional scaling (MDS) is a method for visualizing high-dimensional point clouds by mapping to low-dimensional Euclidean space. This mapping is defined in terms of eigenfunctions of a matrix of interpoint proximities. In this paper we analyze in detail multidimensional scaling applied to a specific dataset: the 2005 United States House of Representatives roll call votes. MDS a...

متن کامل

Improved Multidimensional Scaling Analysis Using Neural Networks with Distance-Error Backpropagation

We show that neural networks, with a suitable error function for backpropagation, can be successfully used for metric multidimensional scaling (MDS) (i.e., dimensional reduction while trying to preserve the original distances between patterns) and are in fact able to outdo the standard algebraic approach to MDS, known as classical scaling.

متن کامل

Hierarchical Clustering and Tagging of Mostly Disconnected Data

We define the document set exploration task as the production of an application-specific categorization. Computers can help by producing visualizations of the semantic relationships between the documents, but the approach of directly visualizing the vector space representation of the document set via multidimensional scaling (MDS) algorithms fails to reveal most of the structure because such da...

متن کامل

Sparse multidimensional scaling using landmark points

In this paper, we discuss a computationally efficient approximation to the classical multidimensional scaling (MDS) algorithm, called Landmark MDS (LMDS), for use when the number of data points is very large. The first step of the algorithm is to run classical MDS to embed a chosen subset of the data, referred to as the ‘landmark points’, in a low-dimensional space. Each remaining data point ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005